
 1

The Livingstone Model of a Main Propulsion System1
Anupa Bajwa Adam Sweet

USRA-RIACS at NASA Ames QSS Group Inc., at NASA Ames
MS 269-4, Moffett Field, CA 94035 MS 269-1, Moffett Field, CA 94035

650-604-1851 650-604-2979
abajwa@mail.arc.nasa.gov asweet@mail.arc.nasa.gov

1 0-7803-7651-X/03/$17.00 © 2003 IEEE
2 IEEEAC paper #1444, Updated December10, 2002

Abstract—Livingstone is a discrete, propositional logic-
based inference engine that has been used for diagnosis of
physical systems. We present a component-based model of
a Main Propulsion System (MPS) and say how it is used
with Livingstone (L2) in order to implement a diagnostic
system for integrated vehicle health management (IVHM)
for the Propulsion IVHM Technology Experiment (PITEX).

We start by discussing the process of conceptualizing such a
model. We describe graphical tools that facilitated the
generation of the model. The model is composed of
components (which may map onto physical components),
connections between components and constraints. A
component is specified by variables, with a set of discrete,
qualitative values for each variable in its local nominal and
failure modes. For each mode, the model specifies the
component’s behavior and transitions. We describe the
MPS components’ nominal and fault modes and associated
Livingstone variables and data structures.

Given this model, and observed external commands and
observations from the system, Livingstone tracks the state
of the MPS over discrete time-steps by choosing trajectories
that are consistent with observations. We briefly discuss
how the compiled model fits into the overall PITEX
architecture. Finally we summarize our modeling
experience, discuss advantages and disadvantages of our
approach, and suggest enhancements to the modeling
process.

TABLE OF CONTENTS
...
1. INTRODUCTION1
2. MODELING APPROACH...........................2
3. MPS MODEL...3
4. MODEL DATATYPES4
5. COMPONENTS ...4
6. TESTING THE MODEL.............................6
7. ACCOMPLISHMENTS AND LIMITATIONS 7
8. CONCLUSIONS ...7
9. ACKNOWLEDGEMENTS7
REFERENCES...7

 1. INTRODUCTION
Model-based diagnosis (MBD) is the task of identifying
faults in a physical system given a model of and
observations from that system. The model consists of
components and connections. The model is used to test
assumptions about the state of a component. The
assumption is “tried out” in the model – that is, the
observations from the system are compared with values
expected (predicted) by the model. When they match, the
assumptions are accepted as accurate representations of the
system’s state.

Model-based tools, in general, are more flexible than rule-
based tools. In fact, the same model may be used in one of
three ways: simulation, diagnosis or recovery. In simulation,
the commands and state of a system are given, and the
model is used to predict the observations (sensor readings)
from the system. In diagnosis, the commands and the
observations are given, and the model is used to find the
possible system states. Finally, in recovery, the observations
and the current state are known (assumed), and the model is
used to find a series of commands that will place the system
into a desired state.

In MBD, there is often a distinction between the actual
model and the diagnostic engine–the program that carries
out the reasoning or inferencing. Livingstone is a
qualitative, discrete, consistency-based reasoner that has
been developed at NASA’s Ames Research Center (ARC).
As a model-based tool it can also be used for simulation and
recovery.

The original version of Livingstone [1] was Lisp-based. The
current, C++, version of Livingstone, called L2, can track
multiple trajectories of the system over time [2]. Over the
years, Livingstone has been a part of several diagnosis
efforts:
• Deep Space 1 – it was used for mode identification, and

mode recovery, during an onboard experiment, called
the Remote Agent Experiment, in May 1999 [3]

• In-Situ Resource Utilization (ISRU) – Kennedy Space
Center explored using Livingstone to confirm that

 2

commands are executed and to diagnose faults in the
ISRU.

• Advanced Life Support System – JSC has worked on
integrating Livingstone with the control system of the
Life Support project.

• X-37 – L2 was slated to fly as an onboard experiment
[4] to monitor electro-mechanical actuators for control
surfaces and electrical power system (though the X-37
program is currently under review).

• International Space Station -- ARC is researching
issues in modeling hardware and software elements for
some ISS subsystems, such as Command and Data
Handling, and in using the model to assist ground
operators with fault analysis.

This paper describes a component-based, discrete system
model of a propellant storage, conditioning and feed system
on a spacecraft such as the X-34 Reusable Launch Vehicle
(RLV) [5]. This model is one part of an integrated
architecture for diagnosis [7], developed by the PITEX
team, comprising researchers at NASA’s Glenn Research
Center (GRC), Ames Research Center (ARC) and Kennedy
Space Center (KSC). From a model consideration, two other
key parts are the monitors and the Real Time Interface
(RTI). The monitors take observations and map them into
discrete values used in the model. The RTI sends these
values to the Livingstone inference engine and decides
when to request a diagnosis from Livingstone. It is not
required that all observations be known, since Livingstone
uses consistency-based reasoning. Secondly, by using a
discrete representation, instead of a continuous one,
Livingstone reduces the state space that must be stored and
searched.

 2. MODELING APPROACH
Before building a model there are several steps that the
modeler has to consider. These are discussed in this section.

Domain understanding

Gaining an understanding of the physical system, or device,
is the first step in the model generation process. For our
modeling task it is sufficient to capture just the minimum
amount of information about the system that will be needed
for the specific purpose of diagnosis. Often knowledge of
the physical system is available in varied formats such as
schematics, nominal operations timeline and telemetry
spreadsheets. A detailed discussion with the system
designers, if they are available, is a key step in gaining a
better understanding of the functionality of the system.

Basic information for a modeler

How do faults change the behavior of the device? In
heuristic diagnosis there is a direct relation between the
failure that occurs and its manifestation at observation
points. In MBD, one models how failures change the local
behavior of a part of the system (which is represented as a

component in the model), and models the influences
between parts. More details on such modeling issues are
available in [6].

An essential part of diagnosis is making inferences based on
observations. So some key considerations are what fault
types are to be modeled and what observations are
available. Observed signals usually have some noise
associated with them, which affects accuracy. Observations
also have varied ranges. Knowledge about these ranges can
help determine the optimal level of abstraction required for
the nominal and fault behaviors of the modeled
components. In addition, the types of sensors, and the
number and placement of sensors (whether redundant or
not) determine what observations are available for system
diagnosis.

What makes an adequate model

Diagnosability of a model is the issue of whether a
particular diagnosis can be sufficiently distinguished from
others, given the observables of the system. If a model
satisfies this requirement for a particular, predetermined, set
of fault scenarios it is an adequate model for that set of
faults [6]. These are the faults that were taken into account
during model generation. This does not imply that these are
the only faults that can be diagnosed. For instance, there
often is an “unknown” failure mode for each component
that acts as a catchall mode for other faults.

Though only component faults are modeled, the key idea is
that the diagnostic engine will be able to use these to detect
many system-level faults, including multiple-component
faults. The component faults have to be known a priori and
often are available from Failure Modes and Effects Analysis
(FMEA). Once these components are connected, the engine
provides the ability to detect system-wide faults.

Basic properties of a model

Sometimes diagnosis is part of a larger task such as
troubleshooting or preventive maintenance. When that is the
case, an adequate model is one that assists a maintenance
engineer in advising on the lowest-cost repair. That is,
effective repairs are advised, no ineffective repairs are
advised and the advice is provided in a timely manner.

In turn, this expects that the diagnostic engine provides
correct diagnoses, provides no incorrect diagnoses (that is,
there are no “false alerts”) and does this in a timely manner.
For the model this implies that the components (and
connections) capture the nominal and faulty behavior of the
system. A good model has states that are uniquely
identifiable, has an optimal number (usually the smallest
number) of components and connections and the cost of
probing the system (number of sensors) is not too high. In
practice, because most diagnosis modeling is done after a
system has been designed, the modeler is simply given a
system with a certain number of sensors.

 3

Structure of a model

A system model consists of components and connections.

Components have terminals (inputs and outputs), modes
(nominal mode, and one or more faulty modes including
“unknown”) and specification of their observable behaviors
(in the nominal and fault modes). Components represent
parts of the system that contribute to the relevant behavior
of the system -- for instance, parts that can fail and how
they can fail and probability of that failure occurring.

Connections represent influence of components on other
components. The modeler’s thought process includes
assessing how nominal and faulty behavior of two or more
connected components can manifest at the visible (and
modeled) observation points. When creating a connection
between two components the modeler defines the
constraints between them. In Livingstone, a constraint is a
clause that represents permissible assignments to variables.

 3. MPS MODEL

For Livingstone a model is a data structure that represents
the real-world device, the faults of which Livingstone
diagnoses. To build a model of the MPS we can use a (Tcl-
based) graphical user interface called Stanley to create a
schematic-like model on the Stanley “canvas”. Stanley then
uses this to generate the model files that will be read by
Livingstone. Livingstone models can be stored in several
different model file formats. A detailed description of these,
and of other Livingstone terminology, is available at:
http://ic.arc.nasa.gov/projects/mba/projects/L2/doc/index.html

The Stanley model of the X-34 MPS is shown in Figure 1. It
shows liquid oxygen (LOX) and rocket propellant (RP-1)
subsystems, pressurization and pneumatic subsystems, and
vent and feed lines. Detailed descriptions of the subsystems
are in [5]. The designed flight profile of the X-34 had two
phases during its captive carry stage: LOX conditioning and
bleed phase. This stage was followed by the burn stage,
where the rocket engine fired, and thereafter the flight
ended with an autonomous landing. The PITEX model was
scoped to diagnose the MPS during captive carry.

Figure 1 – Model of the Main Propulsion System

 4

 4. MODEL DATATYPES
Livingstone variables can take on one of a discrete set of
values. For example, a variable named “sign”, can take the
values “negative”, “zero”, and “positive”. Often, a variable
is defined to divide the (continuous) real-number line into
the discrete values relevant to the diagnosis of a system.
Variables can also be grouped into structures for modeling
convenience. However, Livingstone reasons about each
variable individually regardless of the grouping.

One variable type, called a threshold, has been defined for
the MPS model, and has been used extensively throughout
it. A threshold is a defined variable that can take on two
values, “aboveThreshold” and “belowThreshold”. It divides
the real-number line into two bins at a specified point.
These thresholds can be on values for a sensor reading (e.g.,
170°R) or can be on the derivative of a sensor reading (e.g.,
0.04 psi/s).

The threshold data type is used to create other data types for
the MPS model. There is a structure called a range, which
contains two threshold data types, an upperBound and a
lowerBound. There are constraints defined between the
thresholds that assert the upperBound is greater than the
lowerBound. If, for a particular range, a monitor reports a
reading that is above the lowerBound threshold and is
below the upperBound threshold, then the value is within
that range. Most of the model constraints are implemented
on this level.

Furthermore, the model contains structures built from
multiple ranges. For example, the feedLineTemperature
structure is composed of two ranges, loxTemp and
ambientTemp. The order of the ranges is specified for each
particular structure; however, note that they can overlap.
This hierarchy of datatypes is illustrated in Figure 2.

 5. COMPONENTS
A Livingstone component contains a set of variables (which
also includes a set of modes). The variables can be of any
Livingstone datatype, as described above. The set of modes
is the list of possible states for the component. Each mode
contains constraints that will be active when the system is in

that mode. Thus constraints are logical statements involving
the variables defined within the mode. The types of
allowable constraints include those commonly used in
programming languages (e.g. equals, and, or, if). In general,
a component relates its inputs to its outputs based on its
current mode. For example, when a valve’s mode is open its
output pressure will be equal to its input pressure.

There are two types of modes, nominal modes and fault
modes. In the current version of Livingstone, the modeled
system can transfer between nominal modes only when
given a command. The same system command can cause
multiple components to change mode.

Fault modes differ from nominal modes in two ways. First,
a component can transition into any fault mode from any
other mode, as long as the constraints in the fault mode are
consistent with the current observations. Secondly, a fault
mode has a probability associated with it. This probability
indicates the likelihood of that particular fault mode, and is
constant: the probability of a fault cannot depend on the
current system mode. Livingstone translates the probability
number into an order of magnitude comparison called a
rank. A rank is defined to be the negative of the logarithm
of the probability, rounded to the nearest integer. Hence, the
ranks are positive integers starting from zero, and higher
numbers indicate less likely faults. The ranks also are
additive. If a candidate in a diagnosis contains two
components in a failed state, one failure of rank 1 and one
failure of rank 2, the overall rank of the candidate is 3.

The nominal and fault modes of all modeled components
are presented in Table 1. There are four subsystems in the
MPS:

• pressurization subsystem provides pressurized helium

to the propellant tanks during the bleed and burn phases
• pneumatics subsystem provides pressurized helium to

open and close the pneumatic valves
• Liquid Oxygen (LOX) subsystem has two tanks for

storing liquid oxygen: a forward tank and an aft tank.
All of the logic is implemented in the forward tank and
the aft tank is simply a pass-through component.

• Rocket Propellant (RP-1) subsystem has one RP-1 tank

The model propagates simple constraints on observations to
track the system state. However, in the LOX or the RP-1
tank, the amount of storage (tank level) by itself is not
uniquely indicative of the component’s state. Moreover,
there are not an adequate number of level sensors in the
tank. Therefore, the time-derivative of the pressure sensor
reading is used to indicate the state.

Thus the state of the LOX tank is determined by the states
(“open” or “closed”) of the three valves leading into and out
of the tank, and is defined, in terms of pressure-rates, as

aboveThreshold
belowThreshold upperBound

lowerBoundaboveThreshold
belowThreshold

Threshold values Ranges Datatypes

loxTemp

ambientTemp
feedLineTemperatur

feedLineTemperature.loxTemp.upperBound=belowThreshold

aboveThreshold
belowThreshold upperBound

lowerBoundaboveThreshold
belowThreshold

Threshold values Ranges Datatypes

loxTemp

ambientTemp
feedLineTemperatur

feedLineTemperature.loxTemp.upperBound=belowThreshold

 Figure 2 Model datatypes

 5

shown in Table 2. Similarly, the RP-1 tank model is shown
in Table 3.

Table 1. Nominal and Failure Modes of Components of the Main Propulsion System

Subsystem Component Nominal Mode Failure Mode Rank

Helium tank (tk01) Output pressure > secondary regulator setpoint
Enabling valve (sv01) When valvePosition=open, input=output

When valvePosition=closed, output=ambient

Regulators (rg01, rg11) When Pin>=setpoint, output=setpoint
When Pin<setpoint, output=input

Regulating high
Regulating low
Unknown

2
2
4

Pressurization valves (sv02, sv03) When open and pressure >= primary setpoint, flow>0
When closed, flow=0

Stuck open
Stuck closed
Unknown

3
2
5

Microswitch (mmsw102x, 103x) PositionReading = sensedPosition Faulty 3
Pressure sensors (mpre101p, 103p) PressureReading = sensedPressure Faulty 2

Pressurization

Temperature sensor (mrtd103t) TemperatureReading = sensedTemperature Faulty 2
Helium tank (tk02) Output pressure > secondary regulator setpoint
Regulators (rg02, rg21) When Pin>=setpoint, output=setpoint

When Pin<setpoint, output=input
Regulating high
Regulating low
Unknown

2
2
4

Solenoid valves (sv31, sv32, sv33, sv36,
sv37)

When open and pressure>=primary setpoint, flow>0
When closed, flow=0

Stuck open
Stuck closed
Unknown

3
2
5

Microswitch (mmsw205x, 303x) PositionReading = sensedPosition Faulty 3

Pneumatics

Pressure sensor (mpre102p, 107p) PressureReading = sensedPressure Faulty 2
LOX tanks (forwardLO2, aftLO2) (see table) Unknown 6
Vent relief valve (vr01) When open, flow>0 and temperature in tankMixture(LOX) range

When closed, flow=0 and temperature in ambient range
Stuck open
Stuck closed
Unknown

2
1
4

Engine inlet valve (pv03) When open, pressure>=pressurizationIndicator
When closed, flowIn = flowOut = 0

Stuck open
Stuck closed

2
1

Microswitch (mmsw203x, 213x) PositionReading = sensedPosition Faulty 3
P. sensors (mpre104p, 201p, 204p, 205p) PressureReading = sensedPressure Faulty 2
Controller pressure sensors (mpre202p, 212p,
222p)

PressureReading = sensedPressure and sensor is not biased Biased
Faulty

1
2

LOX

T. sensors (mrtd104t, 201t, 203t, 204t, 205t) TemperatureReading = sensedTemperature Faulty 2
RP-1 tank (rp1Tank) (see table) Unknown 6
Vent relief valve (vr06) When open, flow>0 and temperature in tankMixture (RP-1)

range
When closed, flow=0 and temperature in ambient range

Stuck open
Stuck closed
Unknown

2
1
4

Engine inlet valves (pv07, pv02) When open, pressure>=pressurizationIndicator
When closed, flowIn = flowOut = 0

Stuck open
Stuck closed

2
1

Microswitch (mmsw304x,314x, 301x, 311x) PositionReading = sensedPosition Faulty 3
Pressure sensors (mpre105p, 302p, 304p) PressureReading = sensedPressure Faulty 2
Controller pressure sensors (mpre301p, 311p,
321p)

PressureReading = sensedPressure and sensor is not biased Biased
Faulty

1
2

RP-1

T. sensors (mrtd105t, 301t, 302t, 304t) TemperatureReading = sensedTemperature Faulty 2

Table 3. PITEX RP-1 Tank Model

Sv02
Flow

Vr06
Flow

Pv07
Flow

Predicted Pressure Value

Zero zero zero Below pressurizationRate,
 above bleedRate

Positive zero zero PressurizationRate,
Above

ambientPressureLevel
Zero positive zero VentingRate,

Below
ambientPressureLevel

Zero zero positive BleedRate
Positive zero positive PressurizationRate
Positive positive zero Below

ambientPressureLevel
Positive positive positive Below

ambientPressureLevel

Table 2. PITEX LOX Tank Model

Sv03
Flow

Vr01
Flow

Pv03
Flow

Predicted Pressure Value

zero zero zero HeatingRate
positive zero zero PressurizationRate

zero positive zero VentingRate
zero zero positive BleedRate

positive zero positive PressurizationRate

 6

6. TESTING THE MODEL
For PITEX, the model has been tested in two stages: in
isolation and as part of the integrated diagnostic system. (A
third test of the model, using formal verification tools, has
been done on a current version of the model but that effort
is not addressed in this paper.)

To test in the context of the model, the model is loaded into
Livingstone in a standalone mode. The modeler then inputs
commands and observations interactively, or through a

scenario, which correspond to a particular sequence of
commands and observations. This method of testing is most
useful in finding the set of component interactions that
Livingstone predicts for the system. Many unexpected
interactions can be caught at this stage. However, there are
some limitations. Often, the modeler simply inputs the
observations that he feels is relevant to the situation being
tested, whereas the full set of observations would have
changed the possibilities that Livingstone reports in a
diagnosis. In addition, the actual monitors may input
observations that the modeler didn’t expect. This indicates a
modeling error, and this class of errors may not be

Table 4. Diagnosis of PITEX scenarios.

PITEX
Scenario

DESCRIPTION

TIME OF
FAULT

DIAGNOSIS

Rank

1 Open microswitch, MMSW205X, fails on the
LOX vent/relief solenoid valve, SV31.

3301.70
and

7260.8

Microswitch MMSW205X failed

SV31 Failed Closed and LOX vent/relief valve VR01
Failed Open

3

4

2 Close microswitch, MMSW213X, fails on the
LOX feed valve, PV03.

9410.00 Closed microswitch MMSW213X Failed

3

3 RP-1 feed valve, PV02, fails closed after the
RP-1 bleed has been initiated.

9359.00 PV02 Stuck Closed
SV32 Stuck Closed

2
2

4 RP-1 vent/relief pneumatic valve, VR06, fails
open.

9379.00 VR06 Stuck Open
MPRE103P faulty

2
2

5 Primary RP-1 tank pressurization valve, SV02,
sticks closed.

9383.86 SV02 Stuck Closed
SV02 Stuck Closed and SV02.openMicroswitch faulty
SV02.openMicroswitch faulty and MPRE103P faulty
SV02 unknown fault

2
5
5
5

6 Primary RP-1 tank pressurization valve, SV02,
sticks open.

9384.71 SV02 Stuck Open
SV02.openMicroswitch faulty
SV02 unknown fault

3
3
5

7
Open microswitch, MMSW205X, fails on the
LOX vent/relief solenoid valve, SV31. After
that SV31 fails closed.

3301.70 SV31 Stuck Closed and SV31.openMicroswitch faulty
VR01 Stuck Closed and SV31.openMicroswitch

faulty

5
5

8 GHe pressurization system pressure regulators,
RG11 and RG01, both regulate high.

9000.00 MPRE103P faulty
RG11 regulates high and RG01 regulates high

2
4

9 Two of the LOX vent line pressure sensors,
MPRE202P and MPRE212P, fail high.

0.00 MPRE202P faulty and MPRE212P faulty
MPRE202P biased and MPRE212P biased
MPRE202P faulty and MPRE212P biased
MPRE202P biased and MPRE212P faulty

4
4
4
4

10 Two of the LOX vent line pressure sensors,
MPRE202P and MPRE212P, fail low.

0.00 MPRE202P faulty and MPRE212P faulty
MPRE202P biased and MPRE212P biased
MPRE202P faulty and MPRE212P biased
MPRE202P biased and MPRE212P faulty

4
4
4
4

 7

identified without overall system testing.
Testing the model as a part of the integrated diagnostic
system can begin once the model is stable and the integrated
diagnostic system is implemented. On PITEX, this involves
generating simulated data, processing these continuous data
through the monitors, and then through the RTI and on to
Livingstone. The testing process entails running a fault
scenario, inspecting the Livingstone diagnosis, investigating
the reasons for any spurious results, correcting them, and re-
running the scenario. There are a variety of reasons for
spurious results: model inconsistency, noise issues, RTI
issues, and simulated dataset not matching expected values.
Getting the end-to-end system working is an iterative
process. For instance, the model-monitor teams have to
work together to establish the thresholds of interest and may
have to iterate on changes to the model and the monitors in
order to accommodate all scenarios. Changes include
adding a new fault mode to a component (e.g. microswitch
failure), or adding a new variable to track the state of the
system.

Table 4 shows summary results for all of the PITEX fault
scenarios. “Time of fault” is the time at which the fault is
first observable in the physical system. The failure
candidates diagnosed by Livingstone are shown, along with
the rank of failure. All candidates are correct and, in almost
all cases, the lowest ranked candidate corresponds to the
injected fault.

7. ACCOMPLISHMENTS AND LIMITATIONS
The process of developing and testing the model has driven
development of the core tools, such as L2, used with the
model. One of the fault scenarios studied identified a bug in
Livingstone, which was corrected. Some problems were
also identified, and fixed, in the Stanley graphical
development environment.

Livingstone has brought several advantages to the problem
of diagnosing the X-34 Main Propulsion System. First, it is
fast. Because it uses a discrete model, the state space of the
system is smaller. Also, it provides multiple candidates,
each of which could contain multiple component faults. As
shown in the diagnosis table in the previous section, many
of the fault scenarios considered could have several possible
explanations.

There are many possible topics for future work in this area.
First, the scope of the model could be increased. Many
possible faults are not explicitly modeled, such as tank
leaks. In addition, the scope could be extended beyond the
captive carry phase of the flight. Modeling the burn and
landing phase would highlight many issues in diagnosing
different operating modes of the vehicle. Finally, scalability
effects have been investigated only briefly. It would be
interesting to see how the time required for a diagnosis
increases with the number of components, or with changes
in Livingstone parameter settings during runtime.

A current limitation is that the components are all created
individually, and that they fill specific roles in the model.
Even similar components, such as solenoid valves, have
different models depending on their placement in the
system. It could be useful to make the components more
generic, so they can be reused in the various parts of this
model and even in other future models. The creation and
rigorous testing of generic components would reduce the
development and testing times for future models. An effort
investigating the issues with modeling generic components
is currently in progress.

Finally, more through testing could be done by generating
large numbers of simulations that vary the type and time of
the injected faults. Effort is underway to make the
simulations more adaptable to generate more scenarios;
thereafter, the model can be tested on large numbers of
possible fault scenarios. Better measures for false alerts and
missed alerts of the system can be obtained, which can help
guide the refinement of the diagnostic system.

8. CONCLUSIONS
PITEX has demonstrated that qualitative, model-based
reasoning can be used for diagnosis of a real-world system,
such as an MPS, with continuous sensor values. Several
new ideas have been developed to accomplish this,
including derivative monitors and the current RTI policy.
Since multiple NASA centers worked on different parts of
the integrated architecture, PITEX provided an excellent
opportunity for teamwork and technology exchange.

9. ACKNOWLEDGEMENTS
The current Stanley model of the MPS has its roots in the
original model developed for NITEX by William Millar and
others, in concert with monitor designers. The PITEX effort
also leverages continued maturation of the Livingstone
inference engine and supporting model development tools.

 REFERENCES
[1] Williams, B. C., and Nayak, P. P., “A model-based

approach to reactive self-configuring systems.”
Proceedings, AAAI-1996.

[2] J. Kurien and P. Nayak, “Back to the future for

consistency-based trajectory tracking.” 7th National
Conference on Artificial Intelligence (AAAI 2000).

[3] D. Bernard, G. Dorais et al, “Spacecraft Autonomy

Flight Experience: The DS1 Remote Agent
Experiment” AIAA 99-4512, 1999.

[4] M. Schwabacher, J. Samuels, L. Brownston, “ NASA

Integrated Vehicle Health Management Technology

 8

Experiment for X-37.” SPIE AeroSense 2002.

[5] P. Sgarlata and B. Winters, “X-34 Propulsion System

Design.” 33rd AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, July 6-9, 1997.

[6] Dirk Carel van Soest, “Modeling for model-based

diagnosis.” Thesis, Universiteit Twente, 1993.

[7] C. Meyer, H. Cannon et al, “Propulsion IVHM

Technology Experiment Overview.” IEEE Aerospace
Conference, March 8-15, 2003.

Anupa Bajwa is a scientist at NASA Ames’ Research
Institute for Advanced Computer Science (RIACS). She has
worked on developing a Livingstone model of a Main
Propulsion System for the Propulsion IVHM Technology
Experiment (PITEX). Previously she has worked on
assessment of conflict prediction software for Air Traffic
Control and Surface Movement Advisor at airports, and has
also worked on software for Condition-Based Maintenance
of aircraft engines. She has specialized in Aerospace
Engineering, with a B.Tech. from The Indian Institute of
Technology, Bombay, an M.S. from The Ohio State
University and a Ph.D. from The Pennsylvania State
University.

Adam Sweet is a researcher with QSS Group Inc. at NASA
Ames Research Center. He has worked on creating models
and simulations of physical systems in order to test
diagnostic and autonomy research software.
He has a B.S. and an M.S. in Mechanical Engineering from
the University of California at Berkeley.

 9

